
Diffraction of a shock wave on a wedge moving at supersonic speed 619 

With the pressure determined, the remaining unknown functions can also be found in 
their closed form. For example, the form of the diffraction shock wave AB can be 
computed from (1.1) according to the formula 

u 

where 4 (ki) is known from the solution of the problem in region 4. 
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The most effective methods of generation and intensification of electromagnetic waves 
are based on the interaction of beams of charged particles with attenuating media, in 
which use is made of the fundamental effect of a charged particle stream on the medium 

properties, with the latter changing from a passive state absorbing radiation to an active 
one intensifying the electromagnetic field. In particular, the essential difference between 

a passive and an active medium is confirmed by the fact that theorems related to fluc- 

tuating dissipation applicable to absorbing media do not hold in the case of active ones. 
Hence, it is to be expected that the electromagnetic wave diffraction in active media 
will also take place in a different manner. 

Growth of the magnetic wave amplitude in an active medium is in fact limited by 

either nonlinear effects, or by the finite length of the system active section. In the latter 
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case the change of the medium dielectric properties at the active section boundary must 

be accompanied by a transformation of the intensified wave into some other kind of 
waves. In particular, the problem of electromagnetic energy extraction from the system 
of particle beam-attenuating medium reduces to that of diffraction along the matching 

element. Therefore an investigation of the theory of diffraction in active media in not 
only of a theoretical, but also practical interest. 

One of the problems of this kind, viz. the matching to a coaxial line of plasma wave- 
guide in which electromagnetic waves are amplified by a beam of charged particles, is 
considered below. A coaxial guide should prove more effective in comparison with the 
usually utilized helical guide, particularly with high energy beams when the phase velo- 
cities of waves induced by the beam are close to the velocity of light in vacuum. 

1. We shall assume that the waveguide is in the form of a cylinder (0 < r < a, 
--oO < Z < f W) filled by homogeneous plasma of density rap, and placed in a 
strong magnetic field H,, parallel to the cylinder axis (on ))w~, w, where oH G 

E efi,/mc is the gyroscopic frequency of an electron, e and m are respectively the 

charge and the mass, oP E (4ne%,/m) “2 is the plasma frequency, o is the working 

frequency, and c is the velocity of light). A beam of particles of density 121, moves 
through the plasma waveguide at velocity V, in the direction of z > 0 . (Here and in 
the following subscripts p and b relate to the plasma and the beam parameters respec- 
tively). The coaxial waveguide consists of an infinitely thin semi-bounded (z > 0) con- 
ducting cylinder of radius u and of a conducting casing common to both waveguides 

(r -= b, -co < z < + co, 0 >a). 
The fields generated in this system by dissipation of one of the intensified waves in 

the plasma waveguide are to be determined. 
The dependence of the wave number k= on frequency w in the plasma waveguide 

(z < 0) is defined by h d t e ispersion equation of the latter which is of the form [l] 

where 

AI (0) kl Jl (kp) 
D(kzJGw-- v JO(kLU) = 

0 

v (kz) E (kE2 - k2)“z, k,2 s -FL (kc, w)v” 

(1.1) 

kG+, Imw>O, Rev(k=)>O 

A,, (r) z K, (vr)l, (vb) - (-l)“In (vr) &(vb) 

and E= (k=, O) is the longitudinal component of the system plasma-beam dielectric 
permeability tensor. In the particular case of weak spatial dispersion in which the ther- 
mal motion of beam particles may be neglected, we have r23 

It will be realily seen that the solutions of (1.1) are of the form 

kLa = ?L, (1.3) 

where the slow changing functions of parameters of system it, are derived by substituting 

(1.3) into (1.1). In particular, the equation of a,, for kb < 1 is of the form [l] 
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J, (W = LJ, (Lh 7 3 In(b/u) (1.4) 

For q = 1 we have 3L1 = 1.25, 3L2 = 4.08 etc. 
It can be shown by substituting roots b of (1.4) into (1.3) that when the beam currents 

are weak, i.e. when nb < rzP, the solutions Ynof Eq. (1.1) dependent on the presence 
of the beam can be presented in the form 

(4.5) 

Such waves, also called charge density waves, are intensified in plasma at Re Q(” < 
< 0. For lep@)j --f 0 when the beam velociq VIb is close to the phase velocity V, 

of one of the plasma waveguide waves in the absence of a beam, the solution of the dis- 
persion Eq. (1.3) is of the form 

(1.6) 

v’“’ E c 1 + 
hnW 

Q 
(OP 

2 - 02) u2 1 
-‘A 

= vb 

The dispersion equation of the plasma cyclinder which fills the inner coaxial conduc- 
tor may be obtained from(l. 1) by passing to the limit b -+ a, and its solutions are of 

the form of (1.3)-(1.6), on condition that the roots qnof Eq. J, (qn) = 0 are substi- 
tuted for constants An. 

With fixed parameters of this system the condition of intensification of longitudinal 
waves Ree,(“) < 0 can only be fulfilled for a finite number of waves in the left- and 
right-hand waveguides containing plasma. It follows from the obvious inequality 

L < rln =C L+l< %+l (1.7) 

that the number n of intebsified waves in the left-hand waveguide is always greater than, 

or equal to the number vz of intensified waves in the right-hand waveguide (m < n < 
\< LQ + 1). The methods of solving the problem in these two cases are different, and 
will be considered separately. 

2, If condition 

is fulfilled, then there is no intensification in the coaxial guide, while in the left-hand 
waveguide there is only one intensified wave defined by the transverse wave number 

&/a and the longitudinal wave number y1 (Im ~1< 0) 

J% (r,z) = EJ, (Q-la) ew (&z) (2.2) 

We shall assume the amplitude E, of this wave as given, and shall determine the fields 
generated by its dispersion at the entry to the coaxial guide. 

The problem reduces to finding the solution of the wave equation 

1 a i3E, 
--_r_ 

r r r +(yg- + k2) e,*E, = 0 (2.3) 

Here the asterisk denotes the multiplication of the field Fourier component by corre- 
sponding values of function E= (k=, O) defined by (1.2). Boundary conditions amount 
to stipulating the continuity of E, and Ei along the plasma surface (r = U, z < 0). 



At the surface of conductors (r =I b, - w ( z < + w and r = a, c > 0) a fur- 
ther condition must be satisfied, viz. E, = 0. 

Hear the bo2mdary of the &XKX coaxial conductor 

p I_ [(r- a)% + s2]‘/z 4 0 

the field energy must be finite because of the asclumption of absence of radiation sources 
in this region [3]. When co~~~t~on (2. I] is satisfied, all fields of the considered system 
decrease at great distances from the inhomogeneity. and the solution of Eq. (2.3) may 
be saught in the form of a superposition of plane waves in each of the regions in which 
the dielectric properties of the system remain contkuous 

ZJ 6) s (8% - @)‘is, f&w f$) > 0, kg ff) - - fL (Lz, a) 9 (4 

HCZ@ el (t) and e, (t) ;lr@ the unknown amplitudes of the Fourier fields which are. to 
be determined ffom the boundary conditions, Functions A, (I‘, t) are defined by /I&_ 

We srrbsritute fields (a, 4) into the boundary conditions 

E, (r = a - 0, z < 0) = E, (r = a 4- 0, z < 0) 
Hv (r = a - 0, z(0) =&{r = a-j-0, zc.0) (2.5) 

E, (r =rz - 0, z<O) = E, (f =a-+a, z<O) =O 

The systems of paired integral equations thus obtained may by the lemma of Wiener- 

Paley-Rappoport [4. 51 be reduced to the following system of Hilbert boundary value 

problems ffP 73 aIor%g axis fm f = 0: 
$ (t> - 9’ f@ = ES- it> (2.61 

(2*7) 

S&Mion <‘2,6), (2.7) makes it possible to determine el [b) and e, ft) using the foollow- 

From the condition of b~~n~e~n~s of the energy in proximip of the inner coaxiaf 

conductor boundary [3] follows that the? polynomial P (t) in the general solution (2,6) 
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cp’ 0) - q+ (t) = P (t) = E- (t) 

is zero. The boundary value problem (2.7) is then reduced to 

@r+ (t) = G, (t) @t-(t) (2.9) 
where the following notation has been used : 

q+ (t) FE CD,- (t) E x- (t) (t- k)’ 2 

Go(t)~(I+in,)~-l(t), ~_-(~--I)“‘, Ret-t,>@ 
(2.10) 

The solution of the homogeneous boundary value problem (2.9) vanishing at infinity 
is uniquely defined by its index [S, 71 which essentially depends on the presence of inten- 
sification in the left-hand waveguide. If absorption is considerable and the beam density 
low, then intensification is absent (Im yr < 0). In that case the index of problem (2.9) 

is zero (see Appendix), hence its solution is uniquely and identically zero. This means 
that in the absence of intensification the dispersed fields cannot occur in the system 
without an external inducing field which can be any superposition of the considered wave- 

guides own waves arriving form infinity. 
When absorption is low and the beam density sufficiently great, then intensification 

takes place (1m yr < 0). The problem index is in this case equal unity (see Appendix). 
so that there exists a solution of the problem which vanishes at infinity and depends on 
the single constant 

_ (2.11) 

Here I’* are arbitrary constants satisfying conditions Sgn Im r* = + 1, and func- 
tions Xi* (t) are bounded at infinity solutions of the homogeneous problem of conjuga- 

tion Xl+ (t) = G, (t) XI- (t) 

G, (t) = G,(t) * (2.42) 

Constant C in solution (2.11) is uniquely defined by the stipulation that the intensified 
wave amplitude (the pre-exponential factor in (2.4)) be equal to the known magnitude 
E, (see (2.2)). Substituting e, (t) from (2.8) and (2.11) into (2.4) we obtain 

(2.13) 

r- =‘r1, D’ z -&D (4 

The final expression of the Fourier components of the dispersed fields is derived using 

e1 CL) = 
(t + k)“Z c Slk (t) -- 

Ik (1 + in_) Jo (kin) t - 71 

e2 (t) = 

Jo (kia) 
-- el (t) 

do (a, t) 

(2.14) 

3. We shall now consider solutions in the case in which the following inequality is 
satisfied : 

x2 < 
((0 2 - 02) u2 

p Vb2 < h22 (3.1) 

so that intensification takes place also inside of the coaxial conductor (in these conditions 
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only the first radial harmonics of lowest radial wave numbers can be intensified in both 
parts of the plasma waveguide). In this case in region b ,< r < u , z > 0 the field 
does not decrease with increasing distance from the inhomogeneity, hence, representation 

(2.4) is inapplicable. It is however possible to separate from the field of the right-hand 
waveguide an intensified wave, and then represent the remaining field in the form of 

plane wave superposition 

J% (r, z) = ArJ, (t-hrla) exp (iw) + F!I (2) Jo [kl (1) T] exp (itz)dt (3.2) 

O<r,(a, -co~z<+ca 

+CQ 

J% (r, 2) = 5 fz (t) & (r, t) exp (W dt (3.3) 
--co 

a\(r\<b, --oo< z< +oo 

Here th = 2,405,..., x1 is defined by expressions (1.5) or (1.6) (with the substitu- 
tion yt 3 x1, h, + vi) ; constant A, and the unknown amplitudes fr It) and f, (t) 

are determined from the boundary condition (2.5). 

Substituting into the boundary conditions (2.5) the fields E, from (3.2) and (3.3) and 
fields Hq defined by relation 

( 
s + la) H, = i/c % 

we obtain the nonhomogeneous boundary value problem 

@p,+(t) = G,(t) @o- (1) + &G,(t) (:_y; 
ArA, ikrlJ1(q1) 

(Xp-q. 
(3.4) 

of the type of (2.9) in which function Go (t) is as previously defined by (2. lo), and the 
Fourier amplitudes fr (t) and f2 (t) are expressed by the solution of (3.4) using the fol- 
lowing relations : 

f 
1 (3.5) 

It can be shown (see Appendix) that the index of problem (3.4) is in this case zero, 

hence, its solution valishing at infinity does exist and is unique. Constant A,,so far con- 
sidered as known, is uniquely defined as in the previous case by the requirement for the 
amplitude of the intensified wave field E, to be at z + - co equal to the known mag- 

nitude El in accordance with (2.2) 
A, = (‘1 - rr) ( xl2 - k2) a Xo- (~1) EI 

ql [(n + k) (x1 - k)]“’ xO- (rl) 
(3.6) 

where X,* (t) are the bounded at infinity solutions of the homogeneous conjugate prob- 
lem X0+ = G,X,,-. Thus, in the case of (3. l), the solution is uniquely defined by expres 

sions (3.4)-(3.6). 

4, The method of solution presented above can be extended to the case of an arbitrary 
number of waves intensified in the left-hand (n) and the right-hand (m) waveguides 
(1 < m < n < m + 1). 

fn this case the field in region 0 < r < a, z > 0 is to be sought in the form (cf. 

(3.2) ) 
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E, = 2 AJ, (qlr la) exp (ixp) + E, 
I=1 

(4.1) 

where the sum corresponds to waves intensified in the coaxial conductor, and E, to 
fields decreasing at considerable distances from the inhomogeneity. and can be repre- 

sented in the form of superposition of plane waves. 

The unknown constants Al for n = m, when the index of a boundary value problem 
of the kind of (3.4) is zero, is determined in the same way as A, in (3.6) from the known 
amplitudes E, of the intensified waves of the left-hand waveguide 

Ezl = EJ, (Air / a) exp (hz) (4.2) 

For n = m + 1 the number of known constants in (4.2). and consequently the num- 
ber of equations required for the determination of the unknownAI is equal to m + 1, 
i.e. it exceeds the number of unknowns by one. In this case, however, a homogeneous 
problem of the kind of (2.9) has a nonzero solution containing (similarly to (2.11)) one 

more unknown constant, so that the number of equations remains, as previously equal to 

the number of unknowns. 

5, The problem of energy input into the coaxial conductor in the presence of a weak 
magnetic field (WH < O, oP, o - k=I’b) may be considered in the same manner. 

In this case the dispersion equation of the plasma waveguide with a beam is of a form 

similar to (1. l), viz. 
&=(k=, 0) (5.1) 

k 2~_ 
E= (k=, 61) [kz2 + (up2 + ob2-- m2) C-1 

I F= (k=, 0) + P”ep i&p --e= (k=, @)I 

P-vb/c, EpG I- s 
The analysis of this equation shows that in the absence of a beam (nb = 0) only a 

single slow (VQ < c) surface wave (k,’ < 0) can propagate in the plasma waveguide 

in the 0 <a < 2-‘hp frequency range. The introduction of a beam into such a wave- 
guide results in the appearance of slow volumetric waves (called charge density waves, 
or longitudinal waves) the longitudinal wave numbers of which for nb < rzP are defined 
by relations 

Tnvb = o f jf$ { 1 + P%,% $$ + A,,‘+ (ab2 + top2 - 02) f]-‘y (5.2) 

where constants &(or x,) may be derived after substitution of (5.2) into (5.1). 
It follows from (5.2) that in the case of the weak magnetic field considered here the 

intensification condition 0 < or, is independent of the radial wave number. Hence, 
for NJ < oP all charge density waves of the right-hand waveguide are intensified. It 

will be readily seen that the method of determination of dispersed fields is in this case 
analogous to that adduced in Sect.4 for a finite number of intensified waves in a wave- 
guide in the presence of a strong longitudinal magnetic field. The only difference is in 
that in the sum in (4. l), m = 00 is to be specified in this case. Consequently the num- 
ber of equations of the system defining constants A 1 must be infinitely great, due to the 
number of intensified waves in the left-hand waveguide. the amplitudes of which (El in 
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(4.2) ) are known, being equal to the number of intensified waves in the right-hand side 
waveguide. The index of the corresponding homogeneous problem is zero for ?‘/w~< 

< o < ~n,when the surface wave is not subject to intensification, and is equal plus 
unity for 0 < 2-'/z up, when the surface wave is intensified (see Appendix). In the 

latter case the number of unknowns, and correspondingly the number of equations are 
increased by one. 

6. When the Fourier components of dispersed field, e. g.(2.14) and (2.15) are known, 
then these fields themselves can be determined. The determination of conditions in 

which the effect of the beam on the diffraction characteristics of the problem is at its 
maximum. is of considerable interest. 

It should be first of all noted that the charge density waves defined by (1.5) cannot 
exist in a waveguide in the absence of a beam, even when IZ~ -+ 0. Hence, the analysis 

presented above is necessary for an investigation of such waves. 
A comparison of the diffraction characteristics of passive and active systems is possible 

in the case of resonance only, when at low beam density its velocity is close to the phase 
velocity of one of the proper waves of the plasma waveguide without a beam (see (1.6)). 
The transformation coefficients defined as the ratio of magnetic amplitudes of the 

coaxial (!c= = k, r = a + 0, z > 0) and the incident (k= = yr, r = a - 0, 
2 < 0) waves, coincide to within magnitudes of the order of the intensification coeffi- 

cient (1 rn - WV,-l I< y,). In fact the’computation of the coaxial wave amplitude 

using (2.14) and (2.4) yields in the case of an active system 

where Htis the amplitude of the intensified wave magnetic field. 
The expression defining the amplitude of a coaxial wave generated by the plasma 

waveguide own wave coming from z = -co in the absence of a beam (Im yt > 0) 
may be found from (3.2)-( 3.6) by substituting A, + E, and x1 + yt. After simple 
computations we derive for the case of a passive system 

(6.2) 

Here H, is the amplitude of the incident wave magnetic field, and X,* (t) are the 

solutions of the bounded at infinity homogeneous problem of conjugation 

x,+ (t) = G, (t), X,- (4, G, (t) zGo (0 I nC=-tb (6.3) 

The computation of integrals appearing in (6.1) shows that for nb -+ 0, when the 

intensification coefficient arjImy,/<Rey,==yo 
is small, the following equations hold 

Xt- (rr) = - X,- (r) “‘(yY!r- r+) 
_ 

so that Expressions (6.1) and (6.2) coincide in this case to within magnitudes of the 

order of a/y,. 
The physical meaning of this result may be interpreted as follows. The transformation 

coefficients are defined in the general case by the field pattern close to the inhomoge- 
neity. Because at weak intensification the field pattern in the case of resonance of an 
active waveguide differs from that of this wave in a passive waveguide only by magni- 
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tudes of the order of intensification along the wavelength, hence, the difference of dif- 
fraction characteristics will also be small. 

Thus the above analysis is necessary in the case of high beam currents, when the inten- 
sification along the wavelength (a/~~) is not small, and also in investigations of the 
transformation of charge density waves. In the general case of an arbitrary beam current 
the coefficient of transformation of an intensified wave into a coaxial one is determined 
from Expression (6.1). 

Appendix. Index Y of the boundary value problems (2.9) and (3.4) is defined by 
the increase of the logarithm of function C, (t) along the contour Im t : 0 [6, 71 

(A. 1) 

The only singularities of G, (t) are zeros and poles. These singularities correspond to 
the waveguide own waves which make up the considered system. For nb - 0 function 
Go (t) is even, hence index v is zero. In the presence of a beam (nb # 0) the number of 

zeros t, =- x,,, and poles t,, = yn of function G, (t) corresponding to volumetric waves 

of the plasma waveguide (kl(yn a) = A,, kI(xm a) = Q,J is doubled owing to the addi- 

tional roots of the kind of (1. B), i. e. due to the presence of charge density waves in the 
beam. If absorption (Im o) is high and the beam density low, then intensification is 
absent (Im y, > 0) even with condition (2.1) fulfilled. In this case all zeros and poles 
corresponding to charge density waves lie close to point tosob/lwb in the upper half- 
plane of the complex variable d . Each time a root x(,$) is bypassed the index Y in- 
creases, while the bypassing of each pole #,‘) leads to the index being halved. It can 

be shown by grouping in (A. 1) terms corresponding to roots x:) and poles y(,‘)with the 
same numbers m that in this case index Y is zero, as the bypassing of each pair of these 
singular points does not result in an increase of the index. 

If however the beam density is sufficiently high, then with condition (2.1) fulfilled 
we have Imy:-) < 0, and the contributions of poles y(T’ to the index of (A. 1) compen- 

sate each other. The corresponding pair of roots xi*’ remains in accordance with the 
right-hand side of inequality (2.1) in the upper half-plane, hence the contribution of 
these to (A. 1) is equal plus one. The remaining pairs of roots and poles do not contribute 

any increments to (A. 1). Thus, with condition (2.2) satisfied, the index of problem (2.9) 
is equal plus one. 

If, on the other hand, inequalities (3.1) are fulfilled, then both the roots xi*) and the 
poles y(,*) lie in different half-planes, and the index of problem (3.4) is zero, as in the 
case of absence of intensification. 

By grouping poles and zeros of G,, (t) corresponding to intensified and attenuated waves 
of the two waveguides it can be similarly shown that in the general case of an arbitrary 
number of intensified waves in the left-hand (n) and right-hand (m) waveguides the fol- 
lowing equality holds 

1 

1 m=n-1 
v= 0 m=n (A. 2) 

It is readily seen that this equality remains valid also in the case of resonance (1.6). 
as one of the roots of (1.6) corresponds to the proper wave of the plasma waveguide 
without a beam, while only one of the other two corresponding to charge density waves 
may be an intensified one. 

The authors wish to express their appreciation to Ia. B. Fainberg for his stimulating 
interest in this work, and also to V. A. Marchenko and L. A. Vainshtein for discussing its 
results. 
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The problem of plane steady waves of finite amplitude generated by pressure periodically 
distributed over the surface of a heavy fluid of infinite depth was first formulated by 
Stretenskii in 1953 [l] who also gave its approximate solution. The exact solution of this 
problem was presented by the Author for an infinitely deep stream in papers [Z, 31 and 
also for streams of finite depth in [4-S]. 

All of these papers had investigated waves which cease to exist when the periodic part 
of the pressure distributed over the stream surface vanishes and the flow becomes uniform. 

We shall call such waves induced. Waves of constant amplitude occurring at particular 
flow velocities under conditions of constant pressure over the whole surface will be called 
free waves. An exact solution of the problem of these waves was first given by Nekrasov 
in 1921 [7]. 

The possibility of a simultaneous occurrance of these two kinds of waves of small finite 
amplitude in a steam of infinite depth at particular flow velocities is established below. 
We shall call such waves composite waves. When the periodic part of the pressure distri- 
buted over the surface vanishes, such waves are transformed into free waves. 

The general method of computation of characteristics of these waves is presented. 
The complete computation of the first three approximations, and an approximate equa- 

tion of the wave profile are given. 


